Invertibility Methods in Constructive Geometry

نویسنده

  • M. Lafourcade
چکیده

Let us suppose T ( π, 1 2 ) ∼ √ 2 −9 + 1 ∨ · · · × 1± β 6= W (p× 1) tan−1 (−1) × · · · ∩Nq̃

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Elementary Proof of the Restricted Invertibility Theorem *

We give an elementary proof of a generalization of Bourgain and Tzafriri’s Restricted Invertibility Theorem, which says roughly that any matrix with columns of unit length and bounded operator norm has a large coordinate subspace on which it is well-invertible. Our proof gives the tightest known form of this result, is constructive, and provides a deterministic polynomial time algorithm for fin...

متن کامل

From geometry to invertibility preservers∗

We characterize bijections on matrix spaces (operator algebras) preserving full rank (invertibility) of differences of matrix (operator) pairs in

متن کامل

A Constructive Inversion Framework for Twisted Convolution

In this paper we develop constructive invertibility conditions for the twisted convolution. Our approach is based on splitting the twisted convolution with rational parameters into a finite number of weighted convolutions, which can be interpreted as another twisted convolution on a finite cyclic group. In analogy with the twisted convolution of finite discrete signals, we derive an anti-homomo...

متن کامل

Constrained stabilization problems for discrete-time linear plants

In this paper we discuss discrete-time systems which have constraints on all or part of the inputs as well as on the states of the system. We show that solvability of stabilization problems is closely related to two important concepts: right-invertibility of the constraints and the constraint invariant zeros. In the case of right-invertible constraints we give constructive methods to determine ...

متن کامل

Basic Constructive Connectives, Determinism and Matrix-Based Semantics

(Non-)deterministic Kripke-style semantics is used to characterize two syntactic properties of single-conclusion canonical sequent calculi: invertibility of rules and axiom-expansion. An alternative matrixbased formulation of such semantics is introduced, which provides an algorithm for checking these properties, and also new insights into basic constructive connectives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012